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A C N D O  and I N D O  formalism is presented that can be used for any a tom 
combination up to bromine under inclusion of the first transition metal  series. 
The semiempirical parameters  were chosen to reproduce results of ab initio 
calculations on metalorganic compounds.  The calculational results are 
invariant to rotations of the coordinate system but not to a general trans- 
formation into other basis functions. The one-center  Coulomb-expressions 
were selected in order to include intraatomic correlation contributions. Within 
the C N D O  model this could be achieved by the scaled monopole  term F0, 
while in the I N D O  framework the one-center  Coulomb integrals are given as a 
sum of the monopole-contr ibut ion Fo and higher multipole contributions 
expressed as a linear combination of Sla ter-Condon parameters .  The invari- 
ance problem in the case of local rotations within the I N D O  approximation 
was solved by considering the combination of one-center  Coulomb and 
exchange integrals as a function of l but independent  of m. The two-center  
electron-electron interaction terms were calculated via the Dewar-Sabell i ,  
O h n o - K l o p m a n  relation. Penetration effects were treated according to 
Fischer and Kollmar. For the resonance integral H,a~ B parameters  are used 
which carry information related to the directed nature of the chemical bond by 
using optimized Klondyke functions. The core-core repulsion is constructed as 
a superposition of a soft potential  function, describing polarization effects of 
the atomic cores, and a hard repulsion function, avoiding the collapse of the 
atomic cores with decreasing distance. 

Key words: Semiempirical LCAO-methods  - C N D O -  and INDO-approx i -  
mation - Transition metal  compounds - theory and parametrization.  

1. Introduction 

To understand the electronic structure and chemistry of organometallic 
compounds two calculational strategies are currently advocated: qualitative type 
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of calculations based on the Wolfsberg-Helmholtz effective Hamiltonian on one 
side, and ab initio calculations on small species on the other. The first approach 
has been used by R. Hoffmann and coworkers [1] within the framework of the 
Extended Hfickel (EH) method. With this method nearly all systems of interest 
can be treated provided one focuses on qualitative features only. Typical 
examples for ab initio calculations that reach double zeta quality are: MnO~ [2], 
bis(cr-allyl)nickel [3], ferrocene [4], Cr(CO)5 [5] HCo(CO)4 [6], CuC1]- [7] NiC14 
[7]. Unfortunately, the prohibitive computational expense prevents the appli- 
cability of this approach to most organometallic compounds of general interest. 

A path avoiding the shortcomings of the EH procedure and the inherent compu- 
tational difficulties of an ab inito approach seems to be offered by semiempirical 
LCAO methods, trying to mimic the results of a complete ab initio approach with 
an effective approximate Hamiltonian containing various adjustable parameters. 
The theoretical aspects of such a 1:1 correspondence between an ab initio 
approach and semiempirical models have been discussed by several authors [8]. 

In the following we report on a MO model based on the Neglect of Differential 
Overlap (NDO) approximation for all atoms up to bromine including the first 
transition metal series. In the proposed semiempirical approach it is possible to 
include intraatomic and interatomic electron correlation within the Hartree-Fock 
(HF) scheme and thus in principle to go beyond an ab initio HF calculation. In 
order to carry out fast calculations we have chosen the two simplest NDO 
approximations, the CNDO (Complete Neglect of Differential Overlap) [9] and 
INDO (Intermediate Neglect of Differential Overlap) [10] procedure. 

In recent years several attempts to extend the CNDO and INDO approximation 
to transition metals have appeared [11-13]. The first systematic transfer of 
Pople's CNDO/2 approximation [9] to the complete 3d series from Sc to Cu was 
performed by Clack, Hush and Yandle [14] followed by an extension to the INI)O 
model [15]. Both formalisms took over the shortcomings of the early NDO 
parametrization schemes [9, 10], e.g. the tendency to place or orbitals at too high 
energies [16]. This fact limits very much the CNDO/INDO results for those 
interested in electronic absorption spectra or photoelectron spectra. Among the 
many other semiempirical NDO versions [17-20] the most recent ones by Freund 
and Hohlneicher [21] and Bacon and Zerner [22] should be mentidned. Freund 
and Hohlneicher make use of parameters of the Pople CNDO/2 version in case of 
atoms of the first row, while Zerner and coworkers include in their INDO version 
all one-center integrals including hybrid terms for the 3d atomic orbitals [22]. Our 
main goal is to develop a unique model which can be used to interpret photo- 
electron spectra of transition metal compounds and which is applicable to the 
following atoms: 

(a) the second period from Li to F, for which CNDO/2 and INDO originally was 
developed [9, 10] 
(b) the third period from Na to C1, in analogy to the Santry-Segal extension of the 
CNDO/2 formalism to a sp, spd and sp'd' version [23] 
(c) the elements Ga to Br that have been parametrized by Hase and Schweig in a 
CNDO/2 modification [24]. 
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For the elements Ga to Br only a CNDO model could be designed as the necessary 
experimental Slater-Condon parameters are not available for these atoms. For 
the same reason the elements of the third period can be treated with a sp '  basis 
(CNDO and INDO) but within a sp'd' basis only a CNDO approximation is 
possible. Due to the enormous number of interatomic combinations it is not 
possible to determine the semiempirical parameters by means of a least square 
procedure with respect to experimental observables (geometries, heats of forma- 
tion, dipole moments, ionization potentials). The parameters were adjusted by 
comparison with the results of ab initio calculations and experimental equilibrium 
geometries of organic molecules and transition metal compounds. In case of 
transition metal complexes we were anyhow limited to such a procedure as most of 
the necessary experimental data (heats of formation, dipole moments) are not 
known. As reference data we have chosen the results of ab initio calculations on 
about 100 molecules not containing a 3d atom [25-27]. The reference systems of 
the first transition metal series are collected in Table 1. In this table also the ab 
initio basis before and after contraction (in every case Gaussian functions were 
used as atomic basis) is listed which allows an estimate of the ab initio quality we 
used as comparison. The semiempirical parameters of those 3d transition metals 
not contained in Table 1 were determined by linear interpolation across the 
complete series. 

2. Basis Equat ions  

Starting point of our approximation is the LCAO-formalism within the Har t ree -  
Fock tnodel. The energies of the canonical Har t ree-Fock orbitals are obtained by 
diagonalization of the Fock-matrix [28]. 

F. C = 5 .  C- E. (1) 

In the matrix-representation (1) F symbolizes the Fock-operator,  $ the overlap- 
matrix, C the LCAO-eigenvectors  and ~: the orbital energies. In the case of 
L6wdin orthogonalized atomic orbitals (OAO) E is calculated via (2) where xF and 
*C are related to F and C through (3) and (4). 

xF" XC=*C �9 hE (2) 

hC = 51/2" C (3) 

h F = ~-1/2 , ~s. ~-1/2. (4) 

If the well known NDO-approximations (5) and (6) are used within the Har t ree -  
Fock framework the approximate correspondence (7) exists. 

~,~ = (/z Iv) = 6.~ (6) 

NDOF ~ AF (7) 

~, v, h and cr represent AO-basis-functions. In the present work we are focused to 
(2) as framework of our C N D O / I N D O - m o d e l  as the NDO-approximation 
simulates a basis of orthogonal atomic orbitals [29]. 
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Table 1. Selected ab initio calculations on transition metal compounds used as reference systems for 
the parametrization 

GTO before GTO after 
contraction contraction 

Compound s/ p/ d s/ p/ d Reference 

MnO2 Mn 24/15/5 Mn 4/3/1 
O 12/5 O 2/1 

MnO2/CrO]- Mn(Cr) 12/9/6 Mn(Cr) 4/3/2 
O 6/3 O 2/1 

MnO2 Mn 16/13/6 Mn 14/10/5 
O 10/6 0 7/3 

MnO~/CrO]-/VO]- Mn(Cr, V) 12/9/6 Mn(Cr, V) 4/3/2 
O 6/3 O 6/3 

MnO~ Mn 15/11/5 Mn 4/3/2 
O 8/5 ~ 2/2 

MnO~ Mn 11/7/5 Mn 4/3/2 
Mn 12/8/6 Mn 5/4/3 
O 8/4 O 3/2 
O 8/5 O 3/2 

CuCI~- Cu 10/6/3 Cu 5/3/2 
C1 8/4 Cl 3/3 

CuC1]- Cu 12/8/5 Cu 5/4/2 
CI 10/6 C1 3/3 

CuCI]-/NiC1]- Cu(Ni) 14/9/5 Cu(Ni) 9/5/3 
C1 12/9 CI 7/5 

Ni(CO)Jer(CO)6 Ni(er) 12/9/6 Ni(Cr) 4/3/2 
C(O) 6/3 C(O) 2/1 

Ni(CO)JNi(CN)~- Ni 12/8/5 Ni 5/4/2 
C 8/4 C 2/1 
N(O) 8/4 N(O) 2/1 

Ni(CO)4 pseudopot, pseudopot, i 

Cr(CO)5 Cr 12/8/5 Cr 4/3/3 
C(O) 6/3 C(O) 2/1 

Ni(CN)] Ni 12/8/5 Ni 5/4/2 
C 8/4 C 3/2 
N 8/4 c 2/1 

FeF3 Fe 14/9/5 Fe 9/5/2 
F 9/5 F 4/2 

NiF~- Ni 15/11/5 Ni 5/3/2 
F 8/5 F 2/2 

Fe(CsHs)2 Fe 12/7/5 Fe 4/3/2 
C 8/4 C 2/1 
H 3 H 1 

[2] 

[48a] 

c 

d 

[5] 

k 
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Compound 

GTO before GTO after 
contraction contraction 
s/p/d s/p/d References 

Fe(CsHs)2 Fe 12/6/4 Fe 8/4/3 [4] 
C 7/3 C 4/2 
H 4/1 H 2/1 

Ni(C3Hs)2 Ni 10/6/3 Ni 5/4/2 o 
C 6/3 C 2/1 
H 3 H 1 

Ni(C3Hs)2 Ni 11/7/5 Ni 4/3/2 [3] 
C 8/4 C 3/2 
H 4 H 2 

HCo(CO)4/Co(CO)4 Co 12/7/4 Co 4/3/2 [6] 
C(O) 7/3 C(O) 3/2 
H 4 H 2 

GTO = Gauss-Type-Orbital 
pseudopot. = pseudopotential-approximation 

a Dacre, P. D., Elder, M.: Chem. Phys. Letters 11, 377 (1971). 
b Hillier, I. H., Saunders, V. R.: ibid. 9, 219 (1971). 
c Mortola, A. P., Basch, H., Moscowitz, J. W.: Intern. J. Quantum Chem. 7, 725 (1973). 

Wood, M. H.: Theor. Chim. Acta (Berl.) 36, 309 (1975). 
e Demuynck, J., Veillard, A.: Chem. Phys. Letters 6, 204 (1970). 
f Demuynck, J., Veillard, A., Wahlgren, U.: J. Am. Chem. Soc. 95, 5563 (1973). 
g Smit, T. J. M., Haas, C., Nieuwpoort, W. C.: Theor. Chim. Acta (Berl.) 43, 277 (1977). 
h Hillier, I. H., Saunders, V. R.: Mol. Phys. 22, 1025 (1971). 
i Demuynck, J., Veillard, A.: Theor. Chim. Aeta (Bed.) 28, 241 (1973). 
i Osman, R., Ewing, C. S., van Wazer, J. R.: Chem. Phys. Letters 39, 27 (1976); ibid.: 54, 392 (1978). 
k Demuynck, J., Veillard, A., Vinot, G.: Chem. Phys. Letters 10, 522 (1971). 
~ Hand, R. W., Hunt, W. J., Schaefer III, H. F.: J. Am. Chem. Soc. 95, 4517 (1973). 
m Moscowitz, J. W., Hollister, C., Hornback, C. J., Basch, H.: J. Chem. Phys. 53, 2570 (1970). 
n Coutibre, M.-M., Demuynck, J., Veillard, A.: Theor. Chim. Acta (Berl.) 27, 281 (1972). 
o Veillard, A.: J. C. S. Chem. Commun. 1022, 1427 (1969). 

W i t h i n  N D O - b a s e d  H a r t r e e - F o c k  e q u a t i o n s  t he r e  are  d i f fe ren t  poss ib i l i t ies  to 
sat isfy pa r t s  of i n v a r i a n c e  cr i ter ia  [28, 9, 30]. W e  m a k e  use  of an  a l g o r i t h m  w h e r e  

the  a p p r o x i m a t i o n s  a re  i n v a r i a n t  u n d e r  t r a n s f o r m a t i o n s  of the  local  axes b u t  no t  
u n d e r  a t r a n s f o r m a t i o n  in to  a h y b r i d  basis.  Th i s  c r i t e r ion  is the  f o u n d a t i o n  of the  
M C Z D O - f o r m a l i s m  of B r o w n  a n d  R o b y  [31]. 

W i t h  this d e g r e e  of f r e e d o m  the  fo l lowing  m a t r i x - e l e m e n t s  for  the  F o c k - o p e r a t o r  
are  o b t a i n e d  in the  C N D O -  a n d  I N D O - f o r m a l i s m  in the  case of a c losed  shel l  a n d  
a U H F  o p e n  shel l  p r o b l e m  [32]: 

C N D O  c losed  shel l  

F~,~ = H ~ ,  + E P,~ ( ~ # I A A ) -  ~P~,~ ( ~ l # ~ ) ~  (8) 
A 

F~,~ = H~,~ - yP~(m~]vv) .~ (9) 
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CNDO open shell 

( E ) "*~ F"~. =H. .+  P;,x-P~x (/x/zlhh)+ ~, Pxx(/z/x[hA) 
\ h ~ A  A~B 

(lO) 

(~ oz (11) 

INDO closed shell 

B ~ A  

F.  AA = H~,~ + E P,~,~[(/zP, IAA)-�89 [~A)]+ E Po-o-(v.~lo'o-) 
A . ~ A  o ' ~ B  

(12) 

F A A H ~ 3  1 = - ~ P . ~ ( ~ , ' I . , ' ) - # % ( ~ I ~ ' ~ ' )  (13) 

FAy 1 = H.~ - ~P~ ( ~  [uv). (14) 

INDO open shell 

B ~ A  

FAA"=H.~+ ~ [P~A(t~[AA)-P~x(~A]~A)]+ ~ P~,~(tz~[o-o-) (15) 
A ~ A  o '~B  

= Va RAA~ (2P,.~-P~)0zv]~zv)-,~(p4z]vv) (16) 

pAS, = H~. - P ~  ( ~  Ivv). (17) 

The symbols in Eqs, (8)-(17) correspond to the standard labels defined in the 
literature [9, 10]. F.~ stands for a diagonal-element of the Fock-operator while 
F,,, F~, AA and F,AY symbolize off-diagonal elements. In the INDO-model one has 
to differ between F AA where both atomic basis functions are centered at atom A 
and FAy where/~ is placed at A and v at B. The open shell equations are given for 
a-spin orbitals and a corresponding set also holds for 0-spin orbitals [32]. H.~ 
and H~. define the elements of the core-Hamiltonian 

H~. =<~IH .... I,> (18) 

The electron-electron interaction-integrals are generally defined in (19). 

(~ulh~) = <t' (1)'(1)l l l A  (2)o-(2)). (19) 
r l 2  

In the case of the INDO equations (12)-(17) the one-center exchange integrals 
(tLultzu) (tz e A, v ~ A) are taken into account leading to the EMZDO (Exchange 
Modified Zero Differential Overlap) model of Dixon [10], the well known 
INDO-version of Pople [10] and the Many-Center-ZDO-extension of Brown and 
Roby [31]. The elements of the bond-order matrix, P~, are defined in the usual 
way [9, 10]. 

The expressions for the total energies Etot for closed and open shell systems are 
given in (20) and (21); here E~r ~ stands for the repulsion of the atomic cores A 
and B. 
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Closed shell system 

Etot = ~" E Z e ~  (H~,~ +F.~) + E 2 E ~  e. 
v A < B  

(20) 

Open shell system 

Etot =1" 22[P~(H~+F~)+P~. (H.~+F~)J+Y.Y~ E~.~ e. (21) 
p. u A < B  

In the UHF-formalism for open shell systems the Hartree-Fock determinant for 
~- and fl-spin orbitals is an eigenfunction of the operator Sz (z component of the 
total spin S) but not an eigenfunction of S 2. There are contributions of higher spin 
states in the HF groundstate determinant. By means of spin-projection it is 
possible to create HF-solutions that are approximate eigenfunctions of S 2. In 
most semiempirical MO-versions, on the other hand, it has been demonstrated 
that the approximate annihilation of a single spin-component [33] did not 
improve the computational results significantly while also the lowering of the total 
energy was negligible [22, 34]. Often calculated spin-densities before annihilation 
were in better agreement with experimental findings than after simple anni- 
hilation. Therefore in the present study no use of spin-projection is made in the 
open shell calculations. 

For the computation of the elements of the Fock-matrix the following terms must 
be determined either theoretically or by semiempirical estimation techniques: 
one-center Coulomb-integrals, one-center exchange-integrals (INDO), two- 
center Coulomb-intergrals, diagonal-elements of the core-Hamiltonian H~,, the 
corresponding nondiagonal contributions H ~  and a repulsion potential E~,~ ~ 
between the cores of the atoms A and B. Additionally an AO-basis must be 
defined. A detailed description of the necessay parametrization scheme is given in 
the following section. 

3 Parametrization 

In the present CNDO/INDO-formalism only the valence electrons are treated 
explicitly, all other electrons belong to the atomic cores. The valence AO's for the 
various atoms are defined below: 

H: ls 
Li-F: 2s, 2p 
Na-Cl: 3s, 3p, (3d) 
K-Zn: 4s, 4p, 3d 
Ga-Br: 4s, 4p 

For the determination of the zeta exponents a set of single-zeta Slater-type 
orbitals is used. Although this single-zeta limitation is not particularly adequate 
when going beyond the elements of the third period, for reasons of computational 
simplicity we adhered to this basis set as there are several efficient techniques to 
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compensate for the failures and shortcomings of a single-zeta basis within a 
semiempirical LCAO-version. All exponents were determined by Burns' rules 
[35] which have been derived by matching the corresponding wavefunctions to 
accurate atomic HF-functions instead of minimizing the total energy (of the 
atoms) as a function of the zeta-parameters. Thus Burns' exponents should be a 
useful basis for the calculation of expectation values in the bonding region. 

Within the CNDO/INDO-formalism the electron-electron interaction-integrals 
can be devided into two classes, the one-center integrals (Coulomb (J~,~) and 
exchange (K,~) integrals) and two-center contributions (of Coulomb-type only). 
Due to different approximations within the one-center terms in the case of the 
CNDO- and INDO-formalism the corresponding integrals must be treated 
differently in the two NDO-procedures. To describe electron-electron interaction 
for CNDO and for INDO we have extended a procedure of Fischer-Hjalmars [36] 
as we combine theoretically calculated and spectroscopically observed increments 
for the determination of the one-center Coulomb-integrals. 

The monopole-term of the Laplace-Neumann-expansion, F0, is calculated 
analytically: 

Fo = (/ztz I VV)o = (s. (1)s. (1)1~ Is~(2)sv (2)). (22) 

s.(1) and s~(2), respectively, symbolize AO's of s-symmetry which give rise to the 
monopole-contribution. To take into account intraatomic correlation the analy- 
tically calculated Fo-value is multiplied by a scaling factor f reducing the absolute 
value of Fo: 

F~ xv = Vo' f. (23) 

For the determination of f we made use of atom spectroscopic data [37], the 
theoretical results of Brown and Roby [31, 38] (who analyzed scaling procedures 
in detail) and by comparison with the integral-evaluation via the Saturno- 
operator where the electron motion is completely correlated [39]: 

1 1 
- -  (24) 

r12  /'1 + r 2  " 

The scaling factors were determined in a way that the calculated monopole terms 
L-,exp of the Laplace-Neumann-expansion agreed both with ~ 0 values derived from 

the experimental data of Ref. 37 by subtracting the associated higher multipole 
contributions and with Coulomb-integrals calculated for some sample atoms via 
the 1/(rl + r2) operator. 

The scale-factors together with the single-zeta values are collected in Table 2. 

Due to the invariance condition with respect to a local rotation of the atomic 
coordinate system the CNDO Coulomb-integrals are completely determined by 
the scaled monopole-expression (25): 

jCNDO = (tXtt lU~,)CNDO ~ F0" f. (25) 
tzP 
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Atom (s ~p ffd fs fp fu 

H 1.3008 0.741 
Li 0.600 0.500 0.848 0.934 
Be 0.900 0.750 0.814 0.888 
B 1.1225 1.000 0.780 0.842 
C 1.500 1.325 0.746 0.796 
N 1.79825 b 1.56875" 0.712 0.750 
O 2.200 1.975 0.678 0.704 
F 2.525 2.300 0.644 0.658 
Na 0.900 0.533 0.330 0.670 0.870 
Mg 1,100 0.700 0.417 0.670 0.870 
A1 1.317 0.867 0.500 0.670 0.870 
Si 1.533 1.083 0.667 0.670 0.870 
P 1,750 1.300 0.833 0.670 0.870 
S 1.967 1.517 1.000 0.670 0.870 
CI 2.183 1.733 1.167 0.670 0.870 
K 0.700 0.450 1.500 0.786 1.000 
Ca 0.825 0.525 1.783 0.786 1.000 
Sc 0.950 0.600 2.067 0,786 1.000 
Ti 1.075 0.675 2.283 0.786 1.000 
V 1.200 0.750 2.500 0.786 1.000 
Cr 1.325 0.825 2.650 0.786 1.000 
Mn 1.450 0.900 2.933 0.786 1.000 
Fe 1.575 0.975 3.150 0.786 1.000 
Co 1.700 1.050 3.367 0.786 1.000 
Ni 1.825 1.125 3.583 0.786 1.000 
Cu 1.950 1.200 3.733 0.786 1.000 
Zn 2.075 1.272 4.067 0.786 1.000 
Ga 2.238 1.400 0.4553 0.7153 
Ge 2.400 1.563 0.4553 0.7153 
As 2.563 1.725 0.4553 0.7153 
Se 2.726 1.888 0.4553 0.7153 
Br 2.889 2.050 0.4553 0.7153 

1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
0.609 
0.607 
0.605 
0.603 
0.601 
0.599 
0.597 
O.595 
0.593 
0.591 
0.589 
0.587 

a The H-exponent is taken in contrast to Burns rules [35] as 1.300, a standard-value in most 
semiempirieal LCAO-versions. 
b In the case of N the ( values have been optimized by means of MO calculations on various 
compounds with nitrogen. 

W i t h i n  t h e  I N D O - f r a m e w o r k  h i g h e r  m u l t i p o l e  c o m p o n e n t s  h a v e  to  b e  a d d e d  to  

Fo  in  t h e  L a p l a c e - N e u m a n n - e x p a n s i o n .  In  t h e  ca se  of  a n  s, p, d b a s i s  t h e  f o l l o w i n g  

S l a t e r - C o n d o n - p a r a m e t e r s  [40]  f o r  t h e  o n e - c e n t e r  C o u l o m b -  a n d  e x c h a n g e -  

i n t e g r a l s  a r e  o b s e r v e d :  

Fp. ~,dd Fdd, GSl p, G~d, G~d, G~Cl. 
2 ~ a  2 ~ 

T h u s  a o n e - c e n t e r  C o u l o m b - i n t e g r a l  in  t h e  I N D O - m o d e l  is  g i v e n  b y  t h e  s c a l e d  

m o n o p o l e - t e r m  F o ' f  a n d  a p a r t i c u l a r  c o m b i n a t i o n  of  S l a t e r - C o n d o n -  
~F pp F~ d, F~ d, G~", G~ '~, G~ d a n d  G~ a) a r e  p a r a m e t e r s ,  A l l  n e c e s s a r y  v a l u e s  ~ 27 

k n o w n  f r o m  a t o m  s p e c t r o s c o p i c  d a t a  a n d  a r e  c o l l e c t e d  in T a b l e s  3 a n d  4. 
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Table 3. Slater-Condon-parameter for the INDO-formalism; 
F-intergrals (cm -1) 

Atom F~ p F~ d F~ d 

H 
Li 426 a 
Be 857 [60] 
B 1123 [60] 
C 1455 [60] 
N 2084 [60] 
O 2227 [60] 
F 2774 [61] 
Na 196 a 
Mg 1056 [60] 
AI 517 [60] 
Si 730 [60] 
P 951 [60] 
S 1464 [60] 
C1 2O56 [60] 
K 46 a 
Ca 93 [60] 
Sc 330 c 
Ti 350 [62] 
V 370 [62] 
Cr 390 [62] 
Mn 410 [62] 
Fe 430 [62] 
Co 450 [62] 
Ni 470 [62] 
Cu 490 [62] 
Zn 510 b 

199 c 
400 [63] 
745 b 
875 [62] 

1005 [62] 
1135 [62] 
1265 [62] 
1395 [62] 
1525 [62] 
1655 [62] 
1785 [623 
1915 b 

5 . 0  c 

10.0 [63] 
53.5 b 
63.0 [62] 
72.5 [62] 
82.0 [62] 
91.5 [62] 

101.0 [62] 
110.5 [62] 
120.0 [62] 
129.5 [62] 
139.0 b 

Extrapolated from the values cited under [60]. 
b Extrapolated from the values cited under [62]. 
c Extrapolated from the values cited under [63]. 

M. C. B6hm and R. Gleiter 

T h e  F0 -con t r i bu t ions  t oge the r  wi th  the  h igher  mul t ipo le  c o m p o n e n t s  (F- and  
G- in t eg ra l s )  have  to be  c o m b i n e d  to ro t a t iona l ly  invar ian t  o n e - c e n t e r  integrals .  
F o r  an s, p and  d a tomic  o rb i t a l  basis  this is d iscussed in the  l i t e r a tu re  [41]. 
I nva r i ance  wi th  r e spec t  to local  ro t a t ions  can be  m a i n t a i n e d  if the  set  of o n e - c e n t e r  
C o u l o m b - i n t e g r a l s  Y~,~,, Y~ and the  exchange  t e rm Kg~ (/x and  u c o r r e s p o n d  to the  

s ame  az imuta l  q u a n t u m  n u m b e r  l) a re  i n t e r r e l a t e d  by  m e a n s  of Eq.  (26): 

Y ~  = Y~ + 2 K ~ .  (26) 

Wi th  this cond i t ion  the  in tegra l  p a t t e r n  in Scheme  1 is o b s e r v e d  for  the  I N D O -  
formal i sm.  In  the  u p p e r  r ight  the  o n e - c e n t e r  C o u l o m b - i n t e g r a l s  a re  co l lec ted  
( including the  d iagonal ) ,  the  co r r e spond ing  exchange  te rms  are  given in the  lower  
left. T h e  i n d e x - T  in the  var ious  f r agmen t s  m e a n s  tha t  the  p a r a m e t e r  has been  
ca lcu la ted  theore t i ca l ly  (with the  a l r e ady  desc r ibed  scal ing p roc e du re )  while  SP 
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Table 4. SIater-Condon-parameter for the INDO-formalism, G-integrals (cm -I) 

137 

Atom G~ p G~ u G~ d G~ d 

H 
Li 6735 [61] 
Be 10292 [60] 
B 14522 [60] 
C 18545 [60] 
N 24085 [60] 
O 31766 [60] 
F 38963 [61] 
Na 4188 " 
Mg 6658 b 
A1 9031 [60] 
Si 12938 [60] 
P 2817 [60] 
S 8269 [60] 
C1 10142 " 
K 2745 ~ 
Ca 4195 [60] 
Sc 2250 c 
Ti 2400 c 
V 2550 ~ 
Cr 2700 ~ 
Mn 2850 c 
Fe 3000 c 
Co 3150 ~ 
Ni 3300 ~ 
Cu 3450 ~ 
Zn 3600 [62] 

488 ~ 238 a 5.0 a 
746 [60] 364 [60] 8.0 [60] 

1957 c 420 c 15.7 c 
2000 [62] 450 [62] 16.8 [62] 
2100 [62] 480 [62] 17.9 [62] 
2100 [62] 510 [62] 19.1 [62] 
1900 [62] 540 [62] 20.2 [62] 
1800 [62] 570 [62] 21.3 [62] 
2100 [62] 600 [62] 22.4 [62] 
2000 [62] 630 [62] 23.5 [62] 
2300 [62] 660 [62] 24.6 [62] 
2118 c 690 [62] 25.7 c 

a Extrapolated from the values cited under [60]. 
b Value of reference [60] multiplied by 10 -~. 
c Extrapolated from the values cited under [62]. 

symbolizes a spectroscopically observed increment .  Inspec t ion  of Scheme 1 

clearly displays that  within an atomic s, p basis four different Cou lomb- in tegra l s  
and two exchange- in tegra ls  are necessary to describe e l ec t ron -e l ec t ron  in ter-  
act ion of a par t icular  atom. Inclus ion of d-orb i ta l s  raises the n u m b e r  of different 

integrals  to eight C o u l o m b - t e r m s  and  five exchange-parameters .  In contras t  to 
Pople ' s  I N D O - v e r s i o n  all inc rements  are t rea ted in a consis tent  manne r .  The  

spectroscopically observed increments  include in t raa tomic  correlat ion.  D ue  to 

the scaling of F0 also the m o n o p o l e - t e r m  conta ins  this correla t ion effect. In  
Pople ' s  t r ea tmen t  a purely  theoret ical  F0-value (without cons idera t ion  of cor- 
relat ion) is combined  with exper imenta l  F-  and  G - p a r a m e t e r s  which include 

e lectron correlat ion.  We  now have to define the scaling factors of the cor respond-  
ing F0-integrals :  Fo  p, F~ ~, F~ d. F~ p is scaled with the s - p a r a m e t e r  in the first 
comple te  period,  in the second and  third the p- fac tor  is used. The  integrals  with 
d - c o n t r i b u t i o n  F~ d and  F~ a are scaled by the cor responding  d -pa ramete r s .  In 
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Scheme 1. One-center Coulomb- and exchange-integrals within the INDO-formalism 

J.~ s p p' d d' 

F~ ~ F~f F~ p F~ d 
s 

T T T T 

G ~x v F~ p + 4F~ p f ~  p - 2F~ p F~) d 

SP T SP T SP T 

3F~ p F~ p + 4F~ p FE d 

SP T SP T 

2G~d + 21G~d 2G~d + 21G~d dd dd Fo +4F2 +36F4 ad 

SP SP SP SP T SP SP 

2Gr~d + E1G~ d 2G~d + 21G~ d 2.5F~d + 22 .5F dd 

SP SP SP SP SP SP 

6~ p 
p' 

SP 

6 ~  
d 

SP 

d' G~d 

SP 

Fd 
T 

F~ a 

T 

Fg d 

T 

F dd _ F ~  d - 9 F ~  d 

T SP SP 

F'~ d + 4 F  dd + 36F dd 

T SP SP 

Scheme 2 we have listed'the C N D O  Coulomb-integrals  in the one-center  limit. 
The nondiagonal  e lements  between AO's  of the same/ -va lue  (PIP' and did') arise 
from the C N D O  invariance criterion due to the neglect of the one-center  
exchange-terms,  the nondiagonal-e lements  of the form Jsp, Jsd and Jpa are the 
result of the one-center  limit (RAB = 0) of the corresponding two-center expres- 
sions. In the case of a s, p basis three different Coulomb-integrals  are necessary to 
describe the local electron interaction while the inclusion of d-orbitals causes six 
different integrals. 

Scheme 2. One-center Coulomb-integrals within the CNDO-formalism 

Jg~ s p p' d d' 

Ss p p  Fo + Fo F~o ~ + F~v ~ dd s~ ad Fo + Fo Fo + Fo 
F~o ~ 

p 

p' 
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d' 

2 2 2 2 

F~ p + F~o d F~ v + Fao a 
F~ p F~ p 

2 2 

F~ ~ + r~o" F~ ~ + Fg" 
Fg" 

2 2 

Fg~ Fg ~ 

Fg ~ 
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As the one-center two-electron integrals already contain intraatomic correlation 
corrections, the corresponding two-center Coulomb-terms must be calculated in a 
fashion where interatomic correlation effects are also included. Thus, we have to 
focus our attention to semiempirical formulas that are well known in theoretical 
organic chemistry. The two most important approaches that meet these dgmands 
are the Mataga-Nishimoto (MN)-approximation (27) [42] and the Dewar-Sabelli. 
Ohno-Klopman (DSOK) relation (29) [43] [44]: 

MN 

A B  "Y~u ~" (I 'zAI"LA] I2BL~B) = 

A B  2e2 
a ix u - -  A A  B B  (.r..  + ] ~  ) 

DSOK 

A B  3 l , v  : / ' ) -~. 

2 
e 

R A B  + a .A~ 

2 
e 

~/R2AB + (e2/4)(1/J  AA + 1/J~U) 2 

(27) 

(28) 

(29) 

Detailed investigations have shown that correlation effects are overestimated in 
the case of the MN-relation if the one-center integrals already have been scaled 
down [45]. Therefore we used the DSOK-relation in our CNDO/INDO- 
formalism. 

The diagonal elements H.r  can be partitioned into two different terms. 

H A  A = U A ~ + Z (~AI VBI~ A) (30) 
B ~ : A  

U ,  A is a local atomic quantity, the energy of a valence electron in the/xth AO in 
the potential-field of the core A. The summation (second term) describes the 
electron-core-interaction between the various cores B and an electron in AO~ 
centered at A. 

Within Pople's CNDO/INDO-procedure U~. is calculated via semiempirical 
formulae from approximative Coulomb- and exchange-integrals and atomic data 
(ionization potentials and electron affinities) [9], [10]. The disadvantage of such a 
procedure is evident as all shortcomings with respect to the representation of the 
one-center F-  and G-integrals are transferred to the corresponding values of U,~ 
which are the dominant terms determining the basis-energy of the AO's. As all 
CNDO/INDO extensions to the transition metal series are based on the original 
Pople versions this drawback is clearly part of the existing semiempirical MO- 
versions within the 3d-class. 

Therefore we used U,~, Upp and Uad parameters that were determined from 
spectroscopic data as had been done by Sichel and Whitehead [46] within the 
CNDO approximation and in Dewar's MINDO-versions [47a]. In Table 5 the 
experimental values for Us,, Up, and Udd are collected. As the cited parameters 
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Table 5. Core-integrals U~, Up, and Uaa for the CNDO- and INDO-formalism (in eV) 

irT CNDO TT C N D O  UCdNDO INDO ~- rlNDO Atom vss --pv Reference U~,~ D~ U.p ~aa 

H -13.595 [46] -12.575 
Li -4.999 -3.673 [46] -4.905 -3.603 
Be -15.543 -12.280 [46] -15.123 -11.948 
B -30.371 -24,702 [46] -29.308 -23.837 
C -50,686 -41.530 [46] -48.507 -39.744 
N -70.093 -57.848 [46] -66.518 -54.898 
O -101,306 -84.284 [46] -95.329 -79.311 
F -129.544 -108.933 [46] -120.865 -101,634 
Na -4.502 -3,247 -1.216 [46] -4,254 -3.068 
Mg -13.083 -9.603 -3.664 [46] -12.298 -9.027 
A1 -22.828 -18.592 -6.974 [46] -21.344 -17.384 
Si -36.494 -30.375 -12.442 [46] -33,939 -28.249 
P -56.230 -42.310 -20.302 [64] -52.013 -39.137 
S -66.796 -58.008 -29.470 [46] -61.452 -53.367 
C1 -86.774 -75.681 -20.704 [46] -79.398 -69.248 
K -3.170 -3.115 -3.080 [46] -2.378 -1,869 
Ca -9.842 -7.696 -7.270 [46] -7.382 -4.618 
8c -20,900 -16.'340 -23.620 a -15.675 -9.804 
Ti -30,200 -23.920 -36.900 [37b] -22.650 -14.352 
V -40.020 -31.930 -51.370 [37b] -30.015 -19.158 
Cr -50,360 -40.370 -67.030 [37b] -37.770 -24.222 
Mn -61,220 -49.240 -83.880 [37b] -45.915 -29.544 
Fe -72,600 -58.540 -101.920 [37b] -54.450 -35.124 
Co -84,500 -68.270 -121.150 [37b] -63.375 -40.962 
Ni -96,920 -78.430 -141.570 [37b] -72.690 -47.058 
Cu -109.860 -89.020 -163.180 [37b] -81.645 -53.412 
Zn -123.300 -100.000 -186.000 " -92.475 -60,000 
Ga -25.032 -19.807 [46] 
Ge -35.844 -29.973 [46] 
As -50.151 -44.485 [46] 
Se -66.005 -57.927 [46] 
Br -76.413 -65.412 [46] 

-3,032 
-7,159 

-23,270 
-36,369 
-50,651 
-66,118 
-82,773 

-100.615 
-119.648 
-139.871 
-161.287 
-183.917 

a Extrapolated from the values of [37b]. 

were  c o o r d i n a t e d  to our  C N D O - s c h e m e  the  I N D O - v a l u e s  then  had  to be  
ex t r ac t ed  in a way  cha rac t e r i zed  in (31): 

u I N D O  = u C N D O  pp d d  sp GSa .,r r 
~,  ~0 + f ( F 2  , F 2  , F~ a, G 1 ,  2,  ,-,1. t.,3 ). (31) 

T h e  3 d  e l e m e n t s  in t h e  th i rd  p e r i o d  h a v e  b e e n  e s t i m a t e d  by  r e l a t i o n  (32) w h e r e  

Uss a n d  Upp a r e  t h e  U - v a l u e s  of  t he  3s a n d  3p e l e c t r o n s  w h i l e  Is, I~ and  Id 
s y m b o l i z e  t h e  v a l e n c e - s t a t e  i o n i z a t i o n  p o t e n t i a l s :  

Udd ,, +i,, ,,i.d. (32) 
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Various detailed investigations concerning the 3d and 4s, 4p participation, 
respectively, in the series Na to C1 and Sc to Zn revealed [14] [15] [23] [48] that 
the virtual atomic orbitals have unrealistically high populations. In the first 
transition metal series the calculated populations for the 4s/4p functions often 
reach values of 2.00 e [48]. A detailed analysis of these anomalies in the 
population of complex compounds can be found in the work of Hoffman et al. 
[49]. 

In trying to mimic the electron population resulting from very sophisticated ab 
initio procedures in the frame of a semiempirical allvalence electron treatment, 
one has to introduce a screening potential for the corresponding core integrals 
(U4s4s, U4p4p and U3d3d in third period): 

U~,~ = (1 - Ksc) U,,.  (33 )  

In this expression Ksc is a screening constant to reduce the population of the/zth 
AO. The following parameters meet the requirement discussed above: 

Ksc U~,~ 

3d Na to C1 0.20 0.80 Udd 
4s Sc to Zn 0.20 0.80 Uss 
4p Se to Zn 0.25 0.75 Upp 

According to Pariser and Parr [50] the core-operator VB can be decomposed into 
two parts as follows: 

VB = Z B '  VB(1)= V ~ - • na[Y~(1)-�89 (34) 
A c B  

In this equation ZB stands for the core-charge of center B, V ~ (1) symbolizes the 
operator of the interaction of an electron at A and the neutral atom B. This latter 
operator gives rise to the so-called penetration integrals. The expressions Ja (1) 
and Kx (1) symbolize the Coulomb and exchange operators while n~ means the 
occupation number of atomic orbital ~ in the neutral atom. In current semi- 
empirical procedures (CNDO/2, INDO and various MINDO programs) the 
penetration integral is neglected completely and thus the core-electron integral 
reduces to: 

A = ? A B  = B ( 3 5 )  

In (35) "~/AB symbolizes the mean value of a two-center Coulomb integral 
depending only on the type of the atoms (A, B) but not on the involved atomic 
basis functions. Our approximation to PAB symbolically can be written as YA(,,)B 
as the/z'th AO on A is explicitely taken into account while the core-contribution 
from B is given by a selected reference orbital. 

We decided to take into account penetration effects at least partially since for the 
higher elements (beyond the second period) the neglected penetration terms 
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reach up to 5 eV [38]. As a basis for our approach we have used the approximation 
of Fischer and Kollmar [51]: 

ZBVAA=ZB[O l ~/AB..I_fl(I_a)(R2B.Ar �9 ( 3 6 )  

fA and fB represent  the atomic scaling factors of Table 2 associated to the atomic 
orbitals which are defined below (Eq. (38) and (39) respectively). 

In expression (36) a is the parameter  that determines the degree of penetration.  
For ~ = 1, one simulates the C N D O / 2  or M I N D O  parametrizat ions where 
penetrat ion effects are completely neglected. In the case of a = 0 the total amount  
of penetrat ion is considered. We assume that a depends on the nature of the 
atomic orbital under consideration; diffuse atomic orbitals have to show larger 
penetrat ion effects than strongly localized ones. Therefore  the following function 
was used for the determination of a. 

a = (37) 

(A is the zeta-exponent  of the atomic orbital localized at center A, nA is the 
corresponding principal quantum number  and (H is the Burns-exponent  of 
hydrogen. Thus the penetrat ion of the l s  orbital of H is zero while all other atoms 
show definitie graduation from the H limit. Below we have collected some 
a -pa rame te r s  for the second and third period: 

a tom as ap 

Be 0.7670 0.7329 
C 0.8787 0.8449 
N 0.9119 0.8813 
O 0.9591 0.9336 
F 0.9927 0.9698 
Mg 0.7288 0.6509 
S 0.8427 0.7895 
C1 0.8650 0.8165 

This summary clearly demonstrates  that an electron in a p-orbi tal  shows a more  
pronounced penetration-effect  in comparison with the associated s-atomic orbital 
and that c~ decreases within a period. Within the 3d transition metal  series a is set 
to 1.00 for the 3d-a tomic  orbitals, which are more localized at the atomic centers 
than the diffuse 4s and 4p functions. 
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f l  is a caling-parameter for the (R2B + (1/~'2))-contribution t o  ZB VAA which is 
necessary in our approximation scheme as also the 3~An-term in (36) is scaled via 
the one-center  integrals. The ~?AB-integrals for atomic orbital/z at atom A and the 
core B are defined below: 

~/AB = ([-s163 SBSB) B ~ S c - Z n  (38) 

~AB = (I.tAlzAldUd B) B ~ S c - Z n  (39) 

Equation (39) corresponds to the MNDO expression of Dewar and Thiel [47], 
while in the case of the transition metal series a 3d AO is the reference function at 
the core B. Numerous computational test calculations demonstrated that the 
results of the semiempirical approach are improved in the case of hetero-bonds 
X - Y  where most of the current semiempirical versions (CNDO, INDO, MINDO) 
create too strong charge separations. In the case of (36) the electropositive 
element of the X - Y  bond is stabilized with respect to the negative partner due to a 
more pronounced penetration. 

Of crucial importance in any semiempirical MO procedure is the definition of the 
nondiagonal elements of the core-Hamiltonian. Within the ZD O  approximation 
the following expression is observed: 

C ~ A B  

= (/./ A[ _ _ l v 2  - V A _  V B [ 1 , B ) ,  (40) 

As all other parameters of the semiempirical Hamiltonian are not direction 
dependent  due to the various invariance criteria H AB is the only increment that /xu 

takes into account the directed nature of the chemical bond. Thus the resonance 
�9 A B  integral H . ~  has been the subject of various theoretical investigations [52], [53] 
to analyze the physical origin that is part of An H / z v  �9 

The physical, quantumchemical information of the resonance integral shows that 
H .  AB is proportional to an interference density -AS p.~ which is a measure of the 
charge transferred into the bonding region due to bond formation. In contrast to 
the well known approximations of most semiempirical MO parametrizations the 

- A B  relation (41) between H.A~ ( p . ~ )  and the overlap integral S AB holds: p.u 

H A B  _ - A B  ~ r ~ A B i 4  A B  
~ ~-p~  ~-~.~ t ~ - I s ~  I). (41) 

Thus the interference desnity is proportional to an overlap-function of the type 
s A B ( 1  A B  - I S . .  [). With decreasing RAB (RAB --) 0) the interference density goes to 
zero. This means that H.Afl runs through a maximum at a definite value of RAU 

semmm ~rlcal methods H AB rea while in current " p' " . .  ches its maximum at RAB = 0 as a 
r_rAB _ .AU In the case of H + Ruedenberg and result of the proportionality . . . ~  a_a.~.  2 

coworkers [52] separated the various energy components that contribute to the 
interference density. The predominant contribution is the kinetic energy Tz while 
the potential energy Vr is negligible. The resonance integral H.Afl therefore is 
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influenced primarily by the -�89 Phenomenologically the results of 
Ruedenberg and Kutzelnigg were confirmed by Nicholson in a large series of 
model calculations (e.g. H2, HLi, HB, HN, HF, B2, CO, N2, Fz) [16]�9 

A B  �9 It can be shown that under the NDO- or ZDO-approximat ion the H , ~  - mtegral is 
coined more by kinetic factors than in a full overlap basis [54]. As the NDO-model  
is equivalent to a simulation of an orthogonal basis (7) Cook has investigated HAY 
in the LSwdin-basis. Here  all potential energy contributions have been vanished 
and H ~  B is given by (42): 

~ . ~ 4 A B  h T  1 f ~ ( T K , ,  + TK~)]. (42) 

TK~ symbolizes the kinetic energy operator  for the AO ' s / z  and v. It should be 
clear that H,AY must ~be determined in a way that on one hand the asymptotic 
behaviour at least in the region of characteristical bond lengths is reproduced by 
the selected formula. On the other hand we have to modulate HAY in such a way 
that differences in the bonding type (crcr, ~'Tr, 66) are reproduced in the splitting 
pattern of the semiempirical eigenvalues. Thus we have used the following 
factorization of the resonance integral: 

A B  HAY = A,~B " lAy . M,~ . (43) 

Here  A,Ay is a function of atomic parameters of the A O ' s / z  and u, I,AY is an 
interference function within the definition of Ruedenberg and Kutzelnigg while 
MAy is a variable flexible function necessary to mimic the results of timeconsum- 
ing ab initio calculations with the semiempirical Hamiltonian. 

A ~  B is a weighted mean value of the valence-state ionization potentials I A and I~ 
given by (44): 

A A  B = 1[(1 + h ) I  A + (1 - h ) I~  ] (44) 

a_; A-If 

The valence-state ionization energies are collected in Table 6. 

For the interference function the expression (45) was used: 

1.4y AB 2 = ( t a n h y p ~ )  �9 (1 - S~)S,~ (45) 

AB -- 0.20 (46) tanhyp.~ = 1 

f " =  cl(RAB -- C2) (47) 

The factor (1 2 -S .~)S.~ in Eq. (45) is close to the approximate relation (41) 
�9 A B  - A B  A B  connecting H . . .  the interference density p . .  and the overlap integral S . . .  Test 
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Table 6. Valence-state ionization potentials (in eV) 

Atom Is Ip Ip Reference 

H 13.06 [61] 
Li 5.39 3.54 [61] 
Be 9.32 5.96 [61] 
B 14.05 8.30 [61] 
C 19.44 10.67 [61] 
N 25.88 13.19 [61] 
O 32.38 15.85 [61] 
F 40.42 18.66 [61] 
Na 5.14 3.04 1.52 [65] 
Mg 7.64 4.52 1.74 [65] 
A1 11.32 5.97 1.96 [65] 
Si 15.15 7.62 2.04 [65] 
P 19.37 10.84 2.86 ~65] 
S 20.52 10.78 3.06 [65] 
CI 25.29 13.99 3.59 [65] 
K 4.44 2.83 1.77 [66] 
Ca 6.11 3.96 3.54 [66] 
Sc 5.70 3.22 4.71 [67] 
Ti 6.07 3.35 5.58 [67] 
V 6.32 3.47 6.32 [67] 
Cr 6.57 3.47 7.19 [67] 
Mn 6.82 3.59 7.93 [67] 
Fe 7.06 3.72 8.67 E67] 
Co 7.31 3.84 9.42 [67] 
Ni 7.56 3.84 10.04 [67] 
Cu 7.68 3.97 10.66 [67] 
Zn 7.81 4.09 11.17 [67] 
Ga 12.64 5.95 [66] 
Ge 15.61 7.56 [66] 
As 17.60 9.05 [66] 
Se 20.82 10.78 [66] 
Br 24.04 12.52 [66] 

calculations within the selected approximation scheme favoured the empirical 
S 2 relation (45) with the ( 1 -  ~ )  modulation instead of the theoretical ( 1 - t S ~ [ )  

proportionality, 

The constant values ca and c2 for the various bonding interactions are collected 
below; cl and c2 were chosen to modify the I.Aff term in the region of charac- 
teristic bond lengths smoothly, avoiding extreme interference contributions in the 
l imi t  RAB ~ 0 a n d  RAB ~ 00. T h e  AB I~v -functions not listed in the following scheme 
are negligible and I,,Aff is set to 1.00. A similar behaviour has been found in the 
MINDO/2 derivative SPINDO/1 (Spectroscopic Potentials adjusted-INDO) 
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[55] where H.Aff has been modulated to reproduce the PE-spectra of hydro- 
carbons. 

Cl c 2 

(2p~rl2pcr) 1.350 1.250 
(2po-[3po-) 1.700 1.250 
(3po'[3pcr) 1.700 1.250 
(2p~']2pTr) 1.325 1.600 
(2p~r]3pzr) 1.60 1.60 
(3p~']3pzr) 1.60 1.60 

Scheme 3. 

AB 2 (tanhyp.~) = 1 for all other AO combinations 
=0.50 if/z or vc4s  S c - Z n  
=0.75 if/z or ~,~4p S c - Z n  
=1.50 if/xor v ~ 3d S c - Z n  

To reproduce the orbital sequence of ab initio calculations with its various 
direction dependent integrals within an NDO-framework with spherical averages 
for most parameters of the Hamilton-operator we have chosen the empirical 
relation (48). RAB is the distance between centers A and B, SYM.~ is a measure of 
nonpolarized AO's with spherical behaviour while POL.~ characterizes the 
deformation and polarization of the AO's into the bonding region via the T.. 
expressions: 

2 2 3/2 
M aft = [RAB+SYM~.]__~r__~_XT__ff_~2 

[ R A B  q- POL.~J 
(48) 

SYM.. = l [ j i  +j@~] (49) 

POL,~ = 21_J---~-. J~ J" (50) 

In the nominator and demnominator of (48) the second terms dominate with 
decreasing RAB and thus MA~B is a strongly direction dependent function in the 
bonding region. With increasing distance between A and B M~,Aff asymptotically 
reaches the value 1.00; significant modulation effects are found between bonded 
centers and between 1, 3 neighbours (a similar H.aff expression has been derived 
by Coffey and Jug [56] based on the commutator-equation of the core- 
Hamiltonian and the dipole-operator). For the functions T.~ Klondyke- 
parameters [57] were used, originally developed by Dewar and Klopman [58] to 
polarize spherical averages of two-center Coulomb-integrals. The Klondyke- 
parameters T.~ were optimized by comparison with the results of ab initio 
calculations and are collected in Scheme 4: 
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/x v T.~ 

ls  ns, npo', 3do" 111 +exp (--RkB)] 
ns, n r 1 ns, npo-, 3do" (�88 +exp (-R~B)]) -1 
npo, 3do ns 1 
npo" npo', 3do" [exp (--RtAB) ] TM 

3dcr npo', 3do [exp (--R~B)] c 

np~ np~', 3d'rr (�89 + exp (--R~B)]) -1 

3d~r npTr, 3drc (�89 +exp (--R~B)]) ~ 

3d6 3d6 (�89 + exp (-R~.B)]) ~ 

c = 1.5 (Sc-Zn) 
c = 1.0 (Na-C1) 

c = 1.5 (Sc-Zn) 
c = 1.0 (Na-CI) 

c = 1.5 (Sc-Zn) 
c = 1.0 (Na-C1) 

N A B  
' = ( 5 1 )  R AB Z t ~  

1 1 
T '  . (52) 

AB AB AB With this flexible set of increments ( A ~ ,  I~v ,  M~v ) the resonance integral H Ab~ 

is completely determined. H ~  ~ is at first calculated in the diatomic coordinate 
systems ( A ,  B )  and the rotated via the t ransformation-matrices O ~  and O~r into 
the molecular system: 

B E 2  AB = O ~ O ~ o H , , .  (53) 
u 

The chosen approximation for the H g  AB integral follows up to different objects. 
On one side the approximation has to prevent  inevitable computational  short- 
comings arising in the theoretical f ramework of a single-zeta allvalence N D O -  
Hamiltonian.  On the other side we tried to use parameters  based on reliable 
quantumchemical ,  physical models and arguments (e.g. the construction of the 
electron-electron interaction-integrals, the consideration of penetrat ion effects, 
the crucial importance of the interference density upon bond formation). These 
models of physical significance hindered an excessive modulat ion of different 
parameters  of the approximate  Hamiltonian.  The connecting link between 
desired accuracy (ab initio caculations and experimental  results), constrains due to 
the N D O  inherent approximations and the use of meaning-rich model assump- 
tions was achieved by a highly flexible design in I~aff and M y  to adjust the 
computat ional  results. Hence the use of a definite H A f t  parametr izat ion always 
has to take into account the success of the method.  Test calculations on an early 
stage of the development  of the C N D O / I N D O  procedure with well known 

t~" Oc.~AB] guided to computat ional  standard approximations for H AB ( H ~  AB ~ ,  
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results far from the desired ab initio quality. Specially the splitting pattern of the 
one-electron functions (e.g. energy separation between or, 7r and 6 type orbitals, 
energy gap between metal 3d and fragment orbitals of the organic ligands) was 
predicted with dramatical errors. Inspection of the CNDO-formalism of Freund 
and Hohlneicher [21] as well as the INDO approach of Bacon and Zerner  [22] 
obviously shows that the same difficulties due to the ZD O  allvalence limitation of 
the molecular Hamiltonian were encountered.  In the work of Freund and 
Hohlneicher the loss of directional bonding interactions were partially compen- 
sated by means of very diffuse 3d zeta-exponents [21], optimized by only a few 
test calculations�9 The resulting 3d single-zeta-exponents are as diffuse as the 
long-range 3d exponent of a double-zeta basis of Slater-type orbitals, an approx- 
imation not taking into account the decay of 3d AO's  in a physical proper  way. 

Such an approach clearly leads to an imbalanced AO-basis. Bacon and Zerner  
[22] on the other hand used a distance-dependent 3d exponent  leading to a 
discontinuous function, a serious drawback if the optimization of molecular 

�9 AB geometries is desired, and different constants in H , ~  depending on the type of 
bonding�9 

The comparison of our H ,  AB approximation with the work of Freund/Hohl -  
neicher and Bacon /Zerner  respectively indicates the inherent model-dependent  
difficulties to find approximate formulae and parameters in transition metal 
compounds that allow economic and satisfactorical MO calculations of theroreti-  
cal properties of general interest. 

Now all electronic parameters of the semiempirical C N D O / I N D O  Hamiltonian 
are defined and only the definition of the core-core-repulsion in the formulae (20) 
and (21) for the total energy are left. To take into account polarization effects of 
the atomic cores we have approximated E~~ e by a soft potential function making 
use of the charge clouds of the valence electrons. To this soft function a hard 
potential is superimposed as the repulsion of the smeared charge clouds is too 
weak at small interatomic distances; in the case of a geometry-optimization the 
atomic cores would collapse. Our empirical core-core-potential  (54) corresponds 
to the MNDO function of Dewar and Tbiel [47b]: 

E~~ r = ZAZs (lz alz a lu B S) + [~ep(nAn). (54) 

ZA and ZB represent the core-charges of the centers A and B while (/z A/~ A I~ , sue  ) 
is a two-center Coulomb-integral of valence electrons/x and ~, at A and B. The 
proper  y-integrals are defined in (55)-(58) for various atom combinations: 

(~)L A].s A [12BIJ B ) 

(sAsAIsBs B) (55) 
(dAdAIsBs~) (56) 
(sAsAIdBd B) (57) 
(dAdAtdBd s) (58) 

frep(RAB) =ZAZB(I,  LAI-tAIpBt'B)[exp ( - - a A •  (--fiB X RAS)] (59) 

A~ and B~ (Sc-Zn) 
A e but B ~ (Sc-Zn) 
A~  but B e (Sc(Zn) 
A e and B ~ (Sc-Zn) 
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Table 7. c~-parameter and feet-values for 3d elements 

Atom ~ Atom a f ~  

H oo K 
Li 0.9600 Ca 1.3200 
Be 1.1700 Sc 1.3436 
B 1.9644 Ti 1.4840 
C 2.2320 V 1.4750 
N 2.8772 Cr 1.9345 
O 2.9370 Mn 2.3757 

Fe 2.2050 
F 3.3330 Co 2.3569 
Na 0.5760 Ni 2.5214 
Mg 0.9075 Cu 2.7624 
AI 1.1853 Zn 2.4809 
Si 1.3490 Ga 1.0631 
P 1.5225 Ge 1.1400 
S 1.7703 As 1.1534 
CI 2.0520 Se 1.4993 

Br 2.0861 

0.9875 

0.9050 
0.9000 
0.9250 
0.9125 

The aA and o~B parameters in (59) were optimized by test calculations on the 
complete series of homonuclear diatomic molecules where a a  and aB were varied 
to reproduce the experimental equilibrium distance. The optimized values are 
collected in Table 7. In the case of weakly bound metalorganic compounds the 
ZAZB(txAtxA[uBUB)-term in (54) and (59) had to be modified by a scale-factor fear 
(60) to reproduce the equilibrium geometries of these species: 

core A A B B 
EAB =feffZaZB(l~ /.1. Iv p )+frepRaB. (60)  

The fe~-values of selected transition-elements are also collected in Table 7. For 
the geometry-optimizations a Fletcher-Powell-algorithm [59] has been used. 
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